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Abstract 

Many non-linear classical mechanical systems arise as the symplectic reductions of linear sys- 
tems. The star products on the corresponding quantized algebras can be derived from the Weyl- 
Moyal product on the algebras of the linear systems. An algebraic approach to Berezin quantization 
is sketched. 
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1. Introduction 

It is possible to discern two broad strands amongst algebraic theories of quantization. 
The traditional methods of Weyl, Moyal, Husimi, Pool, Fock, Cook, Segal and Bargmann 
[W,M,Hus,P,C,B] are straightforward, precise and rigorous but apply most readily to lin- 
ear systems (see also [BC,Co] for some less straightforward applications). Newer tech- 
niques such as star products and deformations [F,Ba,Li], which have acquired a new 
importance in the theory of quantum groups, are less restricted, but, despite their be- 
guiling simplicity, their application to particular situations is not always straightforward. 
The main purpose of this paper is to exploit ideas of geometric quantization to build a 
bridge between the two approaches. The key idea is that most of the symplectic man- 
ifolds which one wishes to quantize are actually symplectic reductions of linear sys- 
tems. For a linear system one may construct a C*-algebra of functions using the ideas 
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of Weyl and Moyal. This can then be pulled back to functions on the original man- 
ifold to provide a star product algebra. In spirit this linearization programme is anal- 
ogous to that relating to geometric and algebraic K-theory, which exploits the 
possibility of imbedding any vector bundle with connection into a trivial bundle with flat 
connection. 

To be a little more precise, let M be a symplectic manifold with symplectic form w, 
and let G be a Lie group of symplectic diffeomorphisms of M. Suppose further that the 
action is Hamiltonian, that is, for each X in the Lie algebra a of G there exists a function 
#X on A4 such that the vector field {x associated to X is dual to the form dq5x, that is 
o(cx, .) = d&. We recall that the moment map @ from M to the dual Lie algebra g* 
is defined by setting Q(m) to be the linear functional taking X to +x(m) for each m in 
A4 [GSl,Wo,So]. Sometimes when the action of G on A4 can be extended to an action of 
its complexification Gc, it is also useful to define a complex moment map from A4 to the 
complexified dual algebra ~2. 

Our treatment of star products is closest to that of Fronsdal [F], which seeks to equip 
a subspace I(M) of the CCQ-functions on a symplectic manifold M with an associative 
product. (It has been shown that the ordinary pointwise product does have deformations 
in this case [dWiL].) This star product satisfies rules which relate it to the usual pointwise 
product on Cw (M) and to the Poisson bracket, but the actual construction is rather formal, 
unless it4 is the homogeneous space for a Lie group G. In that case the star product is 
determined by an ‘exponential map’, that is a I(M)-valued distribution g H E, on the 
group G satisfying the conditions 

Egh = E,*Et,, (Fl) 

Es,+ = g . -%r (F2) 

where (g . f)(m) = f(g-‘m) for any function or distribution on M, and the normalization 
conditions 

El = 1, (F3) 

(F4) 

for all X E g and m E M, where the deformation parameter A is regarded as a constant for 
a given algebra. (The factor of i appears because we use the mathematicians’ convention 
that the elements of Lie algebras are skew-adjoint rather than self-adjoint.) We shall make 
some minor modifications of these conditions later. If the smoothed functions 

s 
f(g)& dg 

G 

are dense in I(M) then (Fl) can be used to define the star product, and (F4) serves to put 
the star product into the right relationship with the Poisson bracket. 

In the linear case, when M is a real vector space we may identify tangent vectors 6 
and r] with elements of M. If s is a non-singular skew symmetric bilinear form on M 
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then we may give It4 a symplectic form ~(6, q) = ~(6, n). If the group G acts lin- 
early on M then the vector 4x(m) is identified with X . m, and it is easy to check that 
we may take &(m> = is(X . m, m), since then d4x(m) = s(X . m, .) = 0(6x, .). 
We shall see in Section 2 that the Fourier transforms of the metaplectic distributions 
S,, defined for g E S,(M) in [KCHl], provide an exponential map whose associated 
star product is the Moyal product, provided that the above axioms are slightly 
modified. 

This in turn can be used to furnish an exponential map and a star product for many other 
symplectic manifolds obtained from M by symplectic reduction. (For any element 6 in g* 
we let GF to be the connected component of the stabilizer of c under the coadjoint action 
of G. It can be shown that MC = V'(t)/ GF is a symplectic manifold called the reduction 
of M at 6 [MW,Wo,LM].) The task is simplified by the fact that most of the interesting 
reductions are defined by quadratic constraints, and these can be expressed directly in terms 
of the moment map. 

The simplest and best known example is provided by the constraint 

lz12 = 1 

on vectors z E C”, with the imaginary part of the inner product as symplectic form. This 
can be derived from the moment map for the group of multiplications by scalars of modulus 
1, since 

Im($(z,e’@z)) =8]zj2, 

and, being abelian, the whole group stabilizes the constraint. The symplectic quotient by 
this action is the projective space @P”-’ (see, for example, [FCK]). We shall see that 
the cotangent bundle T*G of any classical matrix group G can be obtained similarly as 
a reduction of a symplectic space, as can any coadjoint orbit in the dual Lie algebra g’. 
The orbits of highest weight vectors in G-modules for semi-simple Lie groups G provide 
another class of example, this time using complex moment maps, as do some symmetric 
spaces. 

The additional ingredient comes from the fact that in linear spaces one has a duality 
theory for pairs of mutually centralizing subgroups of the symplectic group [Ho 1 ,Ho2,Ho3]. 
Whenever H is another group whose action commutes with that of G then H also acts on 
the reduction. We can, therefore, reduce using the moment map of G to obtain a symplectic 
H-manifold, and vice versa. 

Star products on symmetric spaces and on K5hler manifolds have been investigated in 
two interesting series of papers by Moreno and coworkers [Mol-71, and by Cahen, Gutt 
and Rawnsley [RCG,CGRl,CGR2,CGR3], respectively. These have uncovered a wealth of 
subtle details about the asymptotic behaviour, in particular, and in Section 13 we outline 
how our approach links with them. (We would like to thank the referee for drawing these 
to our attention.) 
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2. Moyal product 

We shall start by reviewing the classical ideas of Weyl and Moyal which construct the 
associative star product for linear symplectic spaces. We shall, with minor modifications, 
largely follow the exposition of Pool [PI. Let V be a 2n-dimensional real vector space with 
symplectic form s. For any constant h the function a(x, y) = exp(is(x., y)/2h) defines a 
projective multiplier on the additive group of V. Let S(V) denote the Schwartz functions 
on V. Using the multiplier cs we may define a twisted convolution product: 

c 

(fi * .f2)(~) = ] fi(u - u)h(u>a(~~ - u, 4-l du 

V 

= 
J 

fl(u - u)fz(u)exp(is(u, u)/2ft) du. 

V 

Together with the involution f*(u) = f(-u), this product gives S(V) the structure of a 
*-algebra. 

There is a natural Fourier transform on S(V) given by 

3‘f(u) = 
s 

f(u)$$ du = 1 f(u)a(u, 2u) du = f(u) exp(is(u, u)/h) du. 
, J 

V V V 

This transform differs from that generally used, though the two are equivalent. The first 
form of the integral is more suitable to generalization, but will not be needed here. We 
have not bothered to make the transform unitary since this form is better adapted to the 
normalization of the star product. It is worth noting that this Fourier transform is within 
a scalar self-inverse, since 32 f = ]Alp2f, where A = (2rriA)-” (the factor of i being 
included for the later convenience). 

The Moyal product C#I * + of two functions in S(V) is defined by 

f$** =3’(3-‘4*3-l+_), 

or equivalently 

fp** = ]n]43(3C#J*3*). 

This reduces to the explicit form 

1 2n 
(#**)(u) = ; 

0 s 
C#J(U + &u)@(u + fiw)e-2is(uVto) du dw. 

V 

Asymptotic expansion of the integral about h = 0 shows that it is approximately the same 
as the pointwise product, but with a correction proportional to the Poisson bracket of C#J and 
@ computed using the symplectic form s and identifying T,* V with V: 

(4 * 9)(u) = 4(~)~(~) + ~iMd&v), W(v)) + CW2). 
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The involution is likewise defined by 

F(f*) = (F’f)*. 

3. Linear exponential distributions 

The symplectic group Sp( V) which acts linearly on V preserving s, gives rise to an action 
S(V) defined by (g . f)(u) = f(g-‘u). Th is action gives rise to the well-known calculus 
of pseudo-differential operators (see, for example [Fo]). For our purposes it will be more 
convenient to follow [KCHl] where it was shown that to each g E Sp(V) is associated a 
tempered distribution S, E S’(V) such that, for any f E S(V), both S, * f and f * S, lie 
in S(V) and 

The distribution S, is unique up to scalar multiples and can be normalized so that S, * Sh = 
a(g, h)Q, where 01 is a &l-valued on Sp(V). Moreover, the distribution is unitary in the 
sense that 

s; = sg-I. 

The proof of these facts is elementary and depends only on explicit solution of the functional 
equation. When g E Sp( V) fixes only the zero vector S, can be written explicitly as 

Sg(u) = A det(g - 1)-ti2 exp(is(u.(s)u)/4R). 

In general S, is supported on (g - 1) . V, where a similar expression holds, to within a 
phase factor. 

It is also possible to find distributions corresponding to transformations in the affine 
symplectic group, which is the semi-direct product of Sp(V) with the vector group of 
translations, Asp(V) = Sp(V) w V. This can be achieved by taking S=(v) = 6(u -a) for 
u in V, and setting S,J,~ = S, * SA for general elements, which gives the explicit formula 

S(A,a)(V) = e 
-iswwSA(u _ a) = e --i~a(W2~sA(y _ a), 

where & (u) = s (u, a) is the moment map for a translation. 
As noted in [HaHe] there is a link between the Fourier transform and convolution with 

S-1. (See also [MO?], which uses this as the basis of a quantization procedure in symmetric 
spaces.) 

Theorem 3.1. The distribution 3 f can be expressed as 

(3’f)(u) = 25-‘(S_, * f)(2v), 

and, in particulaz 

(3S,)(u) = 2nA-‘S_,(2u). 
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Proo$ Since S-1 (v) = 2-“A we have 

(S-t * f)(u) = 2PA 
s 

f(u)e is(v+u)/2h dU = 2-n A3~f(; u), 

V 

whence the general result follows. Since a(-1, g) = 1, we have, in particular, 

S_g(V> = 2-“A3S,($v), 

so that 

3&(v) = 2°K’(S-1 * S,)(2v) = 2”A-‘(S-,)(24. 0 

Now we know that for g E Sp( V), 

2”A-‘S_,(2u) = 2” det(g + 1)-1’2 exp(is(u.(~)u)/h)~ 

The Cayley transform which sends g E Sp( V) to X(g) = (g + l>-’ (g - 1) can be regarded 
as a map from the elements g in Sp(V) for which g + 1 is non-singular to its Lie algebra 
sp( V), and with this interpretation we have 

3S, = det(1 - X(g)>t’2exp(-2iqbx(g)(u)/A). 

This result extends to g = (A, a) E Asp(V), giving 

3’S(A,a) = det(1 - X(A))‘12 exp(-i(2&(.4)(v + $2) + &(v))/h). 

This provides an obvious candidate for the exponential distribution since we have the fol- 
lowing result. 

Theorem 3.2. The distribution E, = 3’s, satisfies the following identities: 

E, * Eh = a(g, h&-h, Eg,+ = @(g, hb(gh, g-‘)(g . -%h El = 1 

for all g and h E Asp(V) and X E a@(V). 

Prooj The Fourier transform of S, is E, so that by the definition of the Moyal product we 
have 

(Es * &) = 365, * Sh) = o(g, h)3Sgh = a(&?, h)E,h, 

from which the first identity follows immediately. 
Similarly, the second equation follows on taking the Fourier transform of the identity 

&+-I = a(g, h)a(gh, g-‘)(g . &>. 

By the previous result we know that 

El(u) = 2nA-1S_,(2u) = 1, 

giving the required normalization. 0 
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Theorem3.3. For any g E Sp(V) and Y E <p(V) 

E, +ih$E,.,~~y)l,=o = E, . (4~(2(g + l)-‘u) + kik tr((g + l)-‘Y)). 

In particular, for any Y E Gp( V) 

d 
ih~E,xp(tY)/r=o = @Y(U). 

325 

ProoJ We differentiate the identity 

Eg * Eexpcry) = dg, exp(tY))Eeexp(tY). 

with respect to t, using the fact that for small t the discrete multiplier must be identically 
1, to obtain 

d d 
E, * iA- Eexp(ty) = ih-E,exp(,y). 

dt dt 

We then note that 

d 
ihxEgexp(tY) It=o 

= ih:2” det(geCY + 1)-1/2exp(is(u, (gecY + l)-l(ge’Y - l)~)lh)l,=O 

= ih-$ det(i(geCY + I))-‘/*exp(is(u, (1 - 2(geCY + I)-‘)v)/fi)i,=o 

= (-~S(IJ, (g + l)-‘gY(g + l)-‘v) - :iA tr((g + l)-‘gY))E,. 

Since the elements of ~p( V) have vanishing trace this can be rewritten as 

($y(2(g + l)-‘u) + iiA tr((g + l)-‘gY))E,, 

whence the main result now follows. The second result follows on setting g = 1 in the 
earlier identities and using the vanishing trace condition again. 0 

Note. With rather more effort one can produce a similar result for Asp(V). These last two 
results combine to show that E, provides an explicit form of the exponential map in the 
linear situation, provided we are prepared to tolerate a few technical differences from the 
properties postulated by Fronsdal. For a start our E,(u) is a distribution in u, rather than 
a function, although it happens to be a function whenever -1 is not in the spectrum of g. 
Moreover, E,(u) is not actually a distribution in g but the section of a line bundle C. (This 
can be seen by considering the behaviour of S, as g tends to an element which has fixed 
points, so that g - 1 is singular. In fact, L is a pullback of the Maslov bundle. One sees by 
Fourier transformation that the distribution is well-defined albeit with a transition function 
[KCH2].) Finally, the metaplectic multiplier a, does not appear at all in the usual star 
product formulae. This is presumably because its restriction to many of the usual subgroups 
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is trivial and, in any case, being discrete, it does not appear in the Lie algebraic approach 
which forms the basis of most the accounts. 

Theorem 3.4. The star product of moment functions satisfies the identity 

4x * 4~ = 4~x4~ + iihq$x,y] + iA tr(XY). 

The star product of anyfunction f E S(V) with a constant c is given by c * f = cf. 

Prooj We set g = exp(uX) in Theorem 3.3, differentiate the outermost terms of the main 
identity with respect to u at u = 0, and multiply by iR. Using the special case, this gives 
for the star product C#IX * &, 

ifi$Eexp(.xj . (&4Wux + l)-‘v) + $ifitr((e-“x + l)-‘Y)). 

Now 

i (eUX + 1)-l = -(eUX + l)-‘Xeux(eux + 1)-l, 

so that the derivative of $y is 

-2ih-&s((eux + l)-‘II, Y(eUX + l)-‘v)l,,o 

= iifi(s(Xu, Yv) + s(u, YXv)) = -$iAs(v, (XY - YX)v) = iiAq$X,y]. 

The trace term similarly gives the derivative 

d 1. ihx(Zlh tr((e -ldx + l)_‘Y)) = ;FAr(XY). 

Substituting these into the formula for the derivative we get 

4x * 4~ = 4x(uMr (u> + ~ihf#qx,yj + iA2 tr(XY). 

As far as the constants are concerned we note that 

F’-‘(E1 *f> = S] *F-If =F’f, 

since S1 is a delta function. We can therefore deduce that 1 t f = f, and the general result 
follows by linearity. 0 

By replacing g by g exp(uX) in Theorem 3.3 it is also possible to generalize this to obtain 
a formula for E, * $X * 4~. The same technique may then be applied to obtain formulae 
for star products of any number of moment maps. For simplicity, except where explicitly 
mentioned, we shall restrict our discussion to the case of linear symplectic transformations 
throughout the rest of this paper. 
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4. Coproducts 

One of the grounds for the resurgence of interest in deformation theory has been the 
development of quantum group theory. In that context the twisted convolution and Moyal 
bracket described in the previous sections have a particularly interesting property, which 
we shall describe in this section. 

A quantum group is a Hopf algebra, so that there is a coproduct as well as a product. The 
product on a group algebra is usually the convolution (or twisted convolution) product, and 
the coproduct is the dual of pointwise multiplication. Now the star product is a deformation 
of pointwise multiplication, so this suggests that its dual would make an interesting new 
coproduct. More specifically (using a conjugate linear pairing) 

=lT -2n I f(v>#(u + &)ll/(u + ~w)e-2is(u3w) du dw du 

= (~IT-~” s- f(u)e-2is(“-“,y-“)~*~(x)~(y) dx dy du. 

This means that 

(Sf)(x, y) = (F~lr)-~” 
s 

f(u)e2is(x-“~y-“)‘A du 

= (hn)-2ne2is(x,y)lh 
s 

f (u)e 2is(y-x,U)/h du 

=7f -2n 
s 

f( i (X + y) + Az)e2is(v-X~z) dz. 

In this form it is easy to see that as h H 0 this tends to the limit 

@f)(x, Y) = f&x + Y>V(Y -xl, 

which is the usual coproduct. Alternatively we may rewrite the earlier expression as 

(Sf)(x, y) = (2n)-2”(3f)(2(y - .x))e2is(x,Y)‘* 

One would also like to know whether a coproduct is equivalent to its transpose. In the 
case of the twisted convolution of Schwartz functions this has a rather unexpected answer. 
Now any coproduct on S(V) maps it to S(V) 63 S(V) 2 S( V 63 V). The transposition map 
I : (u, u) F-+ (u, u) on V @ V is clearly symplectic with respect to the form F CB s. It can 
therefore be implemented by a tempered distribution 31 E S’(V 63 V). That is, writing * 
for the twisted convolution on S( V CB V), we have 

SI * .f = (f 0 0 * St, 

which shows that interchange of the two factors in S(V) 63 S(V) is an inner automorphism. 
This in turn means that every coproduct can be turned to its transpose by inner automorphism 
with 3,. 
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We can, of course, give an explicit formula for 31. It is supported on 

(I - l)(V @ V) = ((z, -z) E v @ v : z E VI, 

where it takes the form 

S[((Z - 1)ur) = CZ exp(ii(s @ s)(w, (I - 1)~)) 

for some constant CZ and w E V $ V. Now, by antisymmetry we have 

(s G3 s)(w, (Z - l)w) = (s @ s)(w, Zw), 

which can be rewritten as 

(s 6L3 s)(Z2w, Zw) = (s $ s>(Zw, w) = -_(s $ s)(w, Zw), 

and so vanishes. Consequently 31 is constant on (I - l)(V $ V). (Much more detailed 
discussion of star products in the context of quantum groups can be found in [Mo6,7], and 
the works cited there.) 

5: Metaplectic representation 

So far we understood how to construct star products and exponential maps on symplectic 
vector spaces, and reduce the vector space to a symplectic manifold. Our next task is to pro- 
vide a practical description of how the reduction process affects the functions, distributions 
and products. There is more than one way to approach this, but for our purposes it will be 
useful to review some facts about the metaplectic representation. 

The Stone-von Neumann theorem tells us that there is, up to equivalence, a unique 
irreducible a-representation, W, of the additive group of V. This can also be extended to a 
*-representation of the twisted convolution algebra of Schwartz functions by defining 

W(f) = J W(u)f(v)dv. 
V 

By transposition a similar definition works for distribution f. 
Since any g E Q(V) preserves c. the map u I-+ W(g . u) also defines an irreducible 

a-representation and so it must be equivalent to W; that is there exists a unitary operator, 
U(g) such that 

wswW(g)-’ = W(g . u). 

In fact, with our earlier notation it is easy to see that 

U(g) = W(S,) = 
s 

&(u)W(u)du 

V 

will implement the equivalence, from which it is easy to see that U is a projective representa- 
tion of Sp( V) with multiplier o. This projective representation is known as’tbe metaplectic 
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representation of Sp( V). Conversely if U (g) is known then the distribution can be recovered 
from the identity 

&(u)f(u) du = IAltWW*W(f))3 
V 

which holds for any Schwartz function f E S(V) by the Plancherel theorem. Formally this 
means that Ss(u) = IAltr(U(g)W(v)*). 

Bearing in mind that ]A] is the formal dimension, the relationship between S, and the 
metaplectic representation is the anologue of Fronsdal’s character formula for his exponen- 
tial distribution [F, Eq. (97)]. 

Theorem 5.1. The exponentialfunction is related to the character of the metaplectic rep- 
resentation by 

s E,(u)du = IAl-‘tr(U(g)). 

V 

ProoJ We have by definition 

s 
&(zI) dv = FE,(O) = F*S,(O) 

V 

= lAl-2S,(0) = ]A]-‘tr(U(g)). 0 

6. Dual pair of subgroups 

Let us now suppose that G is a reductive subgroup of Sp( V) and so is its centralizer, G’. 
Suppose further that G” = G. It is known that if one of G and G’ is compact then there is 
a bijection between the irreducible components of U]G and U ]Q [Hol]. More precisely, to 
each irreducible direct summand D of U 1~ there exists a unique irreducible summand D’ 
of U I Q such that the restriction of the metaplectic representation to GG’ can be written as 

U&J = @Q 63 D’, 

where each D occurs only for a single D’. (The elements of G fl G’, being central, act 
as scalars so can be put in either term of the tensor product.) This decomposition can be 
derived from the fact that the distributions S, with g E G are G’-invariant and they generate 
all G’-invariant tempered distributions. 

This result can be regarded as the quantum analogue of reduction, since it enables one 
to specify the behaviour of the system under the action of G’. (If the system transforms 
under the representation D’ of G’ then one needs only to work with the corresponding 
representation D of G, just as symplectic reduction at cx E g’ picks out a symplectic 
G-manifold Ma). 
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Dual pairs occur naturally whenever one takes the space V to be the space L(Y, Z) of 
linear operators between two finite-dimensional Hilbert spaces Y and Z, with the symplectic 
form 

4x, Y) = Im(W*y)). 

The unitary groups V(Z) and V(Y) act on the left and right of V and each is the centralizer 
of the other. Another simple class of examples is generated by taking a real inner product 
space (Y, B) and a symplectic space (Z, so), both finite-dimensional, and forming V = 
Y 123 Z with s = B C3 SO as symplectic form. In this case O(Y) and Sp(Z) form the dual 
pair. In the special case when Y is one-dimensional so that V = Z, this tells us that the 
metaplectic representation splits into just two irreducibles associated to the two irreducibles 
of 0 (Y) = HZ. There are other examples of dual pairs, and the reductive dual pairs can be 
classified. 

Writing 3-10 and 3101 for the representation spaces of D and D’ we see that the repre- 
sentation space ‘,% of W decomposes as 

The G’-invariant operators on this space are just those of the form 

where 10, is the identity operator on No/, and AD is any operator on ‘Ho. 
It is known that every bounded operator on ‘FI can be expressed in the form 

W(F) = 
J 

F(u) W(v) dv 

V 

for some tempered distribution F [Lu], suggesting that the G invariant distributions will 
decompose into a direct sum of matrix algebras Q&t). The individual components can 
be picked out using the central idempotents in algebra. For example, when G’ is abelian so 
that G’ E G we need only specify the representation D’. If ~0 is the character of D’ then 
the projection onto the component is 

PD = s xD(h)U(h) dh 
G’ 

and the corresponding distributional projection is 

pD = 
J 

xD(h)& dh = &r(pow(u)*). 

G’ 

Since in this case G’ is compact, the projection PO has a finite rank and PO is actually a 
Schwartz fUUCtiOn. Duality means po = PO’. There iS an extensive discussion of duality 
in the context of geometric quantization in [GSl,GS2]. 
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7. Contangent bundles, coadjoint orbits and symmetric spaces 

Before discussing how the linear results can be pulled back to reductions, it is helpful to 
consider some examples to show the sort of systems which can be covered by this procedure. 
Often the symplectic space has the form V = X EI X*, where X* is the dual of X, and the 
symplectic form is given by 

s((x* 6)9 (Yt rl)) = r](x) - 6(Y). 

Suppose that one has a symmetric bilinear map B from X x X to some space L. For A E L*, 
consider the linear transformation 

g(A) : (x, 6) t-+ (x, 6 + A(B(x, .)>I, 

which are automatically symplectic, and together they define a nilpotent subgroup Gg of 
Sp(V). The Lie algebra is also parametrized by L* and a typical element has the form 

(~7 6) I+ (0, UB(x, .))), 

from which it follows that the moment map is defined by 

&(x, 4) = s((x, 6), (0, h(B(x, .)))) = -_:UB(x, x)). 

Fixing the moment map is equivalent to fixing B(x, x). Let us denote by Se the level surface 
of x for which B(x, x) = ij. Since Gg is abelian, each g(h) stabilizes any chosen point, 
6, in the dual Lie algebra. The action of Gg can change 6 to any element of the form 
c + h(B(x, .)). Now for fixed x all such elements give the same value to elements y in the 
subspace B-orthogonal to x, which, away from singular points x, can be identified with the 
tangent space T,.Se to the level surface. We may thus identify the orbit of ,$ under Gg with 
the dual T,* Se of T, St. Thus the reduction process gives the cotangent bundle T * SC. 

There are numerous interesting examples of this. The simplest situation is, of course, 
that of a real-valued quadratic form, when Se is a quadratic hypersurface in X. Even in this 
situation there can be interesting variations. If for example (X, B) is a Lorentzian space 
(that is B has signature (1, q)), and we identify M* with M using B, we have 

B(Jf + fx, E -t rx) = B(t, C) + 2tB(x, 6) + t*B(x, x) = B(C, 6) + 2tB(x, 0 + t2. 

Since B(x, x) = 1, we may choose a basis with x as one element from which we see that 
B(t, 6) -c B(t, x)~, from which it follows that, with a suitable choice off we can arrange 
that B(.$ + tx, 6 + tx) = 0. Indeed, there is a unique point on each orbit such that 6 lies 
on the null cone. Now, we already knew that the reduction would give the cotangent bundle 
to the hyperboloid B(x, x) = 1, so this tells us that this cotangent bundle can be identified 
with the product of the hyperboloid and the null cone. It is, in fact, well known that the null 
cone plays a similar role in harmonic analysis on hyperbolic space to that of momentum 
space in a flat space. 

A more complicated situation arises when one takes X = C(Y, Z), the space of linear 
transformations between two finite-dimensional real inner product spaces Y and Z. Then 
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B(x, y) = $(x*y+y*x) definesabilinearformfrom X toC(Y). Thelevel surfaceon which 
B(x, x) = 1~ is just the Stiefel manifold O(Y, Z) of isometric imbeddings from Y into Z. 
(We shall assume that dim Y p dim Z, so that this is non-empty.) Reduction thus enables us 
to construct its cotangent bundle. In particular, when Y = Z this gives the cotangent bundle 
T* O(Y) and, at the other extreme, when Y = R we have L(Y, Z) = Z and reduction gives 
the cotangent bundle of the unit sphere in Z. More generally, the orthogonal group of Z acts 
transitively on the isometries (by composition). An isometry Z is fixed by those elements 
of O(Z) which acts as the identity on ZY, so that the stabilizer can be identified with the 
subgroup O(ZY’) and St 1 O(Z)/O(ZY’). 

To interpret such examples in terms of dual pairs it is useful to note that the constraint 
x*x = 1, is O(Y) invariant. This suggests that we might use the semi-direct product 
subgroup O(Y) w L(Y)*, rather than just L(Y)*. It is easy to check that the subgroup of 
Sp(X @ X*) which centralizes this is O(Z) w L(Z)*, giving a pleasingly symmetric dual 
pair. (This example can be interpreted in terms of the G - G’ bimodule X in which the 
constraint is defined by a rigging in the sense of Rieffel, [Ri].) 

Unfortunately, neither of the two subgroups is reductive nor much less compact. However, 
numerous examples suggest that the theory of dual pairs extends to mutually centralizing 
non-reductive subgroups of the Sp( V), and even to subgroups of the affine symplectic group 
Asp(V) = Sp( V) w V provided the subgroups lift to those which commute in the central 
extension [KCH2]; but there are no general theorems to assist the analysis. (In fact, if one 
had a theorem for non-reductive subgroups then one could deduce the result for the afhne 
group by embedding it in Sp( V CD R2).) Nonetheless, we can verify duality by direct means 
in this case. The metaplectic representation can be realized on L2(X). An element (A, a) 
in the subgroup O(Y) w C(Y)* is represented by 

(U(A, a)+)(x) = eicr(A*x*xA)/2+(xA). 

According to Mackey’s semi-direct product theory [Ma] this decomposes into a direct 
integral of primary representations (containing only one type of irreducible) parameterized 
by the O(Y) orbits of x*x in L(Y) = L(Y)**. These orbits can in turn be labelled by the 
spectrum of the self-adjoint operator x*x. 

Similarly B, #I in the centralizer 0 (Z) w L(Z)* has metaplectic representation 

(U(B, /3)+)(x) = e-ip(B*xx*E)/2+(B*x). 

This time the primary subrepresentations are parameterized by the spectrum of xx*. Now, 
the spectrum of xx* is entirely determined by that of x*x, since the non-zero eigenvalues 
are the same. This shows that there is a bijection between the irreducible subrepresentations 
of 0 (Y) w L(Y) and of 0 (Z) w L(Z) in the metaplectic representation. Moreover, since 
x is determined up to orthogonal transformations by the fact that it maps the eigenvectors 
of x*x to those of xx*, we see that the metaplectic representations of O(Y) w ,C(Y) and 
O(Z) w C(Z) do generate each other’s cornmutants. 

Returning to the reduction process, as a final example of this sort we take Y = Z @ Iw, 
to obtain L(Y, Z) = L(Z) 6B Z. The level surface defined by PzB(x, x)Pz = Pz. the 
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projection onto Z picks out the Euclidean group E(Z) = O(Z) x Z so that we obtain for 
the reduction T*E(Z). 

These examples were motivated by [Li], and the construction can clearly be generalized to 
the other compact matrix groups and symmetric spaces (and many non-compact ones too), 
and since all are defined by quadratic relations. It is also known that every coadjoint orbit of 
O(Z) occurs as a reduction of T*O(Z), [MW], and so can be obtained by reduction of the 
linear space V. Some of the exceptional groups can be realized as automorphisms of Jordan 
and Cayley algebras A [SC], and so are linear transformations satisfying the inhomogeneous 
quadratic homomorphism constraints, g(x o y) = g(x) o g(y) for all x and y in A, where 
o denotes the product. 

Three of the four classical series of hermitian symmetric spaces have simple constructions 
of this kind using a dual pair G, G’ with Gn G’ = K to construct the symmetric space G/K. 
We illustrate this in thecase of Sp(2n, R)/U(n), recalling that U(n) = Sp(2n, R) II O(2n). 
We therefore take V = ,QR2n), with G = Sp(2n, R) acting on the left and G’ = O(2n) 
acting on the right. Taking on basis (ei , j = 1, . . . , 2n) which is orthonormal with respect 
to the inner product preserved by 0(2n), and letting b be the symplectic form on R2”, we 
define the symplectic pairing of S, T E J!Z(R~~) to be 

2n 
s(S, T) = Cb(Sej, Tej). 

j=l 

This is independent of the particular orthonormal basis chosen. The moment map sends 
X E g’ to #x(T) = cj b(Tej, TXej), and the inverse image of the linear functional X H 
cj b(ej, Xej) is precisely the set of T E G. Our chosen linear functional is stabilized 
by those h E G’ for which b(ej, h-‘Xhej) = b(ej, Xej). Since this is also the same as 
b(hej , Xhej), we see that h must stabilize b as well as the inner product, that is h E GnG’ = 
U(n). Reversing the roles of O(2n) and sp(2n, R) gives 0(2n)/U(n). (Pseudo-orthogonal 
groups are also allowed, so that one can also obtain the non-compact forms.) The dual pair 
U(p+q)andU(p,q)actingontberightandleftofQC (P+q)) with a symplectic form given 
by the imaginary part of the obvious inner product, similarly lead to U(p+q)/U(p) x U(q) 

and U(p, q)lU(p) x U(q). 

8. Highest weight orbits 

Another useful class of examples is provided by the following result. 

Theorem 8.1. Let K be a compact semi-simple Lie group. Every integral coadjoint orbit 
of K in the dual of its Lie algebra can be constructed by reduction of a symplectic vector 
space. 

Proo$ By the techniques of geometric quantization we may associate to each integral 
coadjoint orbit a unitary representation of K [Wo,GS] on a complex inner product space V. 
The imaginary part of the inner product gives V a symplectic form. There is a U (1)-action 
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on V provided by multiplication by complex numbers of modulus 1, which may be used as 
in the introduction to construct the projective space P(V). We shall write [u] for the point 
in the projective space corresponding to the vector u in V. Now it is known that when u is 
a highest weight vector for the representation of K then the K-orbit of [u] in the projective 
space is isomorphic, as,a symplectic K-manifold, to the coadjoint orbit used [R,GS]. On 
the other hand it is known that the K-orbit of [u] is defined by a set of quadratic equations, 
[DF,KCH3]. Indeed, if {Xs} forms a basis for the Lie algebra and KBJ’ denotes the dual 
Killing form, then the vectors w in the orbit of a highest weight vector satisfy the quadratic 
equations 

KByX~w 60 X,w = (A, h)w 63 w, 

where k is the highest weight and the norm is calculated using the Killing form. The orbit 
can, therefore, be obtained by a further reduction of projective space. Alternatively the two 
reductions can be combined into a single reduction of the vector space V. 0 

Example. Consider the three-dimensional irreducible representation of SO (3) on C3. The 
action of SO(3) preserves not only the inner product (u, v), but also the complex bilinear 
dot product u . v. The orbit of a highest weight vector is in this case defined by the single 
equation w . w = 0, which can be combined with the normalization condition (1 w ]12= 1 to 
provide the reduction. 

This examples brings to light an important phenomenon. Since we are dealing with real 
spaces, the constraint w . w = 0 automatically forces the conjugate constraint w* . w’ = 0. 
The Hamiltonian vector fields to which these give rise are w . V,* and w* . V,, which 
together with w . V, - w*VIU* arising from ]w12 generate the Lie algebra of SL(2, Iw), the 
centralizer of O(3). This fits into the general scheme for reduction given a pair of dual 
subgroups. Unfortunately, the general picture is not so simple. The quadratics defining the 
orbit, together with their conjugates generate too large an algebra, to be useful. However, 
the solution is obvious: we know that everything in this case is complex, so we work 
within the complex symplectic group, thus totally avoiding the necessity to introduce the 
conjugate constraints. (In essence this exploits the connections between complex algebraic 
geometry and real symplectic geometry developed in [FCK].) The reductions obtained by 
this procedure are always K%hler manifolds. 

Corollary 8.2. Every integral symplectic K-manifold on which K acts transitively can be 
obtained by reduction of a symplectic vector space. 

Proo$, Every integral transitive symplectic K-manifold is isomorphic to a coadjoint orbit, 
so that the result follows immediately. I3 

Remark. By complexifying the Lie algebra this result can be extended to all orbits of semi- 
simple Lie groups which give rise to highest weight representations. In particular discrete 
series representations of semi+simple Lie groups can be obtained by reduction of symplectic 
vector spaces. 



D. Bowes, K.C. Hannabuss/Journal of Geometry and Physics 22 (1997) 319-348 335 

There is an interesting class of infinite-dimensional examples provided by the Hirota 
bilinear form for completely integrable models. It is known that the solution space of many 
integrable models can be realized as the orbit of certain vectors in the representation space 
of a loop group (or affine Lie algebra). The Hirota bilinear form characterizes the vectors 
0 on the orbit as these for which Sz @J JT? generates an irreducible cyclic representation 
of the loop group. This is entirely analogous to the definition of highest weight vectors by 
quadratic constraints. 

9. Non-linear star products 

For simplicity, we shall henceforth write H = G’ for the centralizer of G. The moment 
map @ : V H h* induces a map @* from S(h*) to H-invariant Schwartz functions SH (V) 
by @*F = F o CD. We want a space of Coo- functions on the orbit 0 s h* or equivalently 
on @-l(O) & V. Usually this is the quotient of SH(V) by the star ideal of functions 
vanishing on 0. This ideal is generated by @X(V) - D’(X) for X E h. When H is abelian 
this is equivalent to that generated by 3& - ~01 (h) for h E H, and is always equivalent to 
taking the ideal generated by PO’ - 1, where ~0’ = pi is the distributional projection ynto 
the space where & acts as the character D’(h). (Invariance under the involution follows 
since PO = p&.) Since we want to construct a star product algebra we take the *-ideal 
ID generated by these elements under the Moyal product. Our algebra will therefore be 
SD(V) = SH (V)/Z, equipped with the quotient product and involution inherited from 
the Moyal algebra. (Quotients of a slightly different kind were used in [MOM]). 

As one might expect, the structure of this algebra becomes more transparent when one 
Fourier transforms back to the twisted convolution algebra. The ideal 10 is transformed back 
to F-‘ZD, the principal *-ideal generated under twisted convolution by 6--PD. We therefore 
have the quotient of the H-invariant functions SH (V) by the ideal SH (V) * (8 - PO>, and 
this automatically inherits a star product from the Moyal product on SH (V). 

When D’ occurs in the metaplectic representation as a discrete summand the projection 
PO is itself a function, and we may write 

sH(V) = sH(V) *PO +SH(V) * (6 - PO). 

The quotient by 3-1xD is then SH (V) * PO, which consists of functions # E SH (V) such 
that 4 = $J * PD. Equivalently when H is abelian, it consists of 4 such that 

for all t E H. This exhibits the quotient algebra as the algebra induced from by D’. The 
above procedure could be generalized to more general H by looking at L(?&)-valued 
functions 4 satisfying a similar equivariance condition. 

Note. The construction of representations of star product algebras by Rieffel’s C*-algebra 
inducing has been discussed by Hennings in [He], and we do not intend to go into any detail 
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here, except to note that combined with the present approach it reproduces the results of 
Landsman [La] in the case of reduction of constrained linear systems. 

Theorem 9.1. Assume that H and G form a compact dual pail: The star product algebra 
constructed SH (V)/Zo is isomorphic to the algebra of operators Lc(?f~). 

Proofi We know that PD = W (~0) is the projection which picks the D’-isotypic component 
from the metaplectic representation, and by duality this is just D@D’. The Weyl quantization 
Qw = W o 9-l maps the star product algebra into L(‘Ho @ tiD1) (and this is an injection). 
The H-invariance means that the factor in ‘Ho! must be an intertwining operator for D’. 
Since this is irreducible this factor must be a multiple of the identity, so that the image of 
so under Weyl quantization is contained in L(‘HD) @I 1. On the other hand the functions 
S, * po are H-invariant and it follows from the above observations that 

wt& * PO> = utg)pD = (D(g) ‘8 1)pD 

on ‘Ho. These operators generate the entire algebra D(G)” Z L(7f~), so the prOOf is 
complete. 0 

When the compactness assumption is dropped one gets a similar result but can deduce 
only that one has a dense subalgebra of L(7-l~). 

It is not immediately obvious how the *-algebra so constructed is related to an algebra 
of functions on the orbit. However, we know that in the limit as h + 0 the star product 
becomes ordinary multiplication, To is precisely the ideal of functions vanishing on 0 and 
the quotient algebra is the algebra of functions on 0. In this case @i : f H 3pD * @*f 
defines an isomorphism and, since everything depends continuously on A, and singularity 
is a closed condition on an operator on a finite-dimensional space, the same must be true 
for all h in some neighbourhood of 0. The star product can now be pulled back to S(h*) 
using the product in S(V), that is 

This is possible since the star product of H-invariant functions on the left is H-invariant, and 
similarly is invariant under multiplication by 3’po. so by isomorphism it must correspond 
to some unique element in the image of 0;. It is the fact that @L depends on the quadratic 
map <p : V + g* which makes the star products look so complicated. 

There is a slightly different way of describing the non-linear star products without spec- 
ifying any particular representation D. The Peter-Weyl theorem tells us that for compact 
groups G the group algebra L ’ (G) is the direct sum of all the matrix algebras L(‘7l~). Not 
all irreducibles appear in the metaplectic representation, but the map taking F E C(G) to 

s Ftg& dg 
G 
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gives an explicit homomorphism from L ’ (G) to H-invariant on V. We can therefore deal 
with all the irreducibles D simultaneously simply using sH(V) with the induced star 
product. 

10. Berezin quantization 

Ideally we should like to complete the above discussion of non-linear star product algebra 
sH(V)/I~ with a description of the exponential functions. Unfortunately, although it is 
clear that these should be the functions Eg” = F(po * S,), these are not correctly normal- 
ized, since E, D = FpD is no t constant. There are various possible responses to this. We 
could, for example, relax the normalization condition to say that star multiplication by E f 
should act as the identity, which is true by the definition of PD. One interesting alternative, 
however closer to Fronsdal’s approach and links directly to much of the recent work, is to 
use Berezin quantization. This also has the advantage of giving explicit formulae for the 
functions on a G-orbit. We shall assume in this and the next section that G is compact. 

Suppose that the orbit 0 Z G/K, where K is a subgroup of G containing G n H. We 
first note that any choice of a density operator p E L(‘FtD) which commutes with the action 
of D(K) defines an embedding of the matrix algebra c(‘FtD) = D’(H)’ into the space of 
functions on G/K by taking the operator A E L(‘HD) to its Berezin symbol, the function 

PA = tr(D(x)pD(x)-‘Ah 

[Bel,Be2]. (When p is the projection onto a vector a, PA = (D(x>Q, AD(x)fZ), 
whilst D(x)fZ/(Q, D(x)Q) is the reproducing kernel.) This expression can be simplified 
by introducing the adjoint representation AdD( = D(g)AD(g)-’ on A E ~(‘HD) with 
the Hilbert-Schmidt (trace) inner product, so that the identity reduces to 

MA = (Ab(x)P, Ah. 

The role of p would be similar to a generalized coherent state [Pel,Pe2,A] except that Ado 
is not irreducible, We can now generalize some of the well-known results to reconstruct A 
from its Berezin symbol. 

Theorem 10.1. Let S be a unitary representation of a compact group G on a jinite- 
dimensional inner product space, and let {q) be a basis for the operators which inter- 
twine S, orthonormal with respect to the trace inner product. Then, with normalized Haar 
measure, for any vectors q5,1c/, t 

Proof. We know that, since it intertwines S the integral can be decomposed in terms of the 
basis (Tj): 
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and the coefficient Ck is found by multiplying by T{ and taking the trace of the operators 
on the two sides. 0 

In the case where all the irreducible constituents of S are multiplicity-free the basis 
elements Tj can be chosen to be multiples of the projections onto the irreducibles. The 
theorem can also be generalized to square-integrable representations of non-compact groups 
provided one has some control over the intertwining algebra. 

Corollary 10.2. I$ under the assumptions of Theorem 10. I, (+,I#) = tr (z>, for all inter- 
twining operators Z then for all f 

s 
($7 S(g)*US(gM dg = 6. 

G 

If4 is cyclic for S then it is always possible to&d a unique vector $I of the form C+, with 
C and intertwining operator, for which this holds, and conversely if + is cyclic there is a 
unique 4 of the form c+. 

In the special case when the projections Pj onto the irreducible components (of dimension 
dj) of Ado are multiplicity free, one has the explicit formulae 

Proof The identity is an intertwining operator and so can be expanded in terms of the basis 
as 1 = cj tr(Tj*)Tj, so that 6 = cj tr(Tj*)Tjt. Comparing this with Theorem 10.1 we see 
that 

J (14, W)*S)S(gM dg = 6 
G 

for all 6 if and only if tr(q*) = (q t+b, 4) = (+, ZQ*#) for all j. Any intertwining operator 
is a linear combination of the Tj*, so the first result follows. Trying 

in the basis-dependent form, we see that the condition becomes 

c (Tj4, Tk#)tr Ck = w(Tj*). 

The matrix of coefficients (q+, Tk#)& is positive, and, when 4 is cyclic it is actually 
positive definite. (This is because, if it were singular, then we could find yk such that 
xk(Tj4, Tk@)yk = 0. Multiplying by fi and SUUdUg this would give 11 c ykT@ 112= 0, 
forcing 

c YkTk4 = 0. 

When $J is cyclic this gives 

c MrTk6 = 0 
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for all 6, forcing c yk Tk = 0. This is possible only for vanishing coefficients yk, since the 
Tj form a basis.) Consequently the components, Ck, and so C itself are uniquely defined, 
giving the stated result for @. The reverse derivation of $ from Qo proceeds similarly. For 
future reference we note that we may choose the Tj to be self-adjoint, and then the ck are 
real, so that C is self-adjoint. Finally, when the irreducibles are multiplicity-free we may 
take q = d;‘12 Pj and use the orthogonality of the projections to reduce the conditions on 
the ck to 

from which the other formulae can be deduced. 0 

Corollary 10.3. rf G is compact and p is Ado-cyclic then there exists a unique operator 
Qo of the form C, for which 

A= s fA(xK)Ado(x)QodxK. 

GIK 

Proof We apply Corollary 10.2 to the representation S = Ado with r$ = p, { = A, and 
QO = $, and use fA(xK) = (Addx)p, A). 0 

Corollary 10.3 gives us a direct method of reconstructing A from its symbol. This dif- 
fers from the usual formulae, obtained by analytic continuation of the kernel of A off the 
diagonal, in that it is more explicit and needs no complex structure. In fact we also obtain 
a formula for the continuation as 

VWbNy)*,A) = 
s 

fA(zK)(&)pD(y)*, Ab(z)Qo, dzK. 

GIK 

It also strongly suggests that we should define the quantization of any integrable function, 
f, on G/K to be 

Q(f) = 
s 

f (xK)Ab(x)QodxK. 

GIK 

(The Moyal quantization of [MOM], though different in aim, uses a similar formula with the 
geodesic symmetry playing the role of Qu.) This is a D-covariant quantization in the sense 
that AdD(g)Q(f) = D(g)Q(f)D(g)-’ = Q(g . f) for all g E G and functions f on 
G/K, where, asusual, (g. f)(xK) = f (g-‘xK). Withthisdefinition wehave Q(fA> = A. 
We shall say that any linear map Q from the chosen space of functions on G/K to L(‘HD) 
is p-normal if Q(fA) = A (cf. [HaHe]). 

Finally we just note that the cyclicity of p and Qu is really needed. If Qu were not 
cyclic then it would generate a subspace of L(‘HD), and we could only reconstruct the 
component of A in that subspace. If p were not cyclic then fA would lose all information 
about the components of A not in the subspace generated by p. (This provides a motivation 
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for Fronsdal’s condition that his function space 7(M) must contain the representation Ado 
OIlL(?fD) 2 'FlD 8%~ [F,Eq.(lS)]. 

The most important consequence of the formula reconstructiong A from its symbol is 
that it enables us to reproduce the effect of operator products by multiplication of their 
symbols. (The usual approach is to compose their kernels which we could also do using the 
formula following corollary.) 

Theorem 10.4. The product offunctions on G/K de$ned by 

(f * g)(xK) = 
s 

f (yK)g(zK)(Ado(x)& Abo’)QoAddz)Qo) dyK cM 

Satisfies fA * fB = fAB. 

ProoJ We simply substitute the formulae for A and B in terms of their symbols into 
fAB(xK) = (Ado(x)& AB) to get fAB = fA * fB. 0 

As usual for function spaces associated with coherent states there is a reproducing kernel. 

Theorem 10.5. When p and Q are related as Corollary 10.3, the function ky(x K) = 
(AdD(x)Qo, AdD(y)p) provides a reproducing kernel for the functions on G/K with re- 
spect to the L2 inner product. This kernel may also be expressed as 

k,(xK) = (Ado(x)P, Ab(Y)Qo, = fAdo(Y)Qo. 

Pro05 Taking the inner product of the condition that Q be p-normal with Ado(y)p gives 

J 
k,(xK)fA(xK)dxK 

GIK 

= 
s 

(Ado(y)p,Ado(x)Qo)trfA(xK)dxK 

G/K 

= hbb')P,& = f/t(YK), 

which is the reproducing property. Using the connection between p and Qo we also see that 

(AdD(x)p, Ado(y)Qo)ti = (Ado(x)P, Ado(Y)CP)tr = (Ado(x)CP, Ado(y)P)tr, 

the last step following from the self-adjointness and intertwining properties of C. 0 

11. Normal exponential maps and star products 

Any Berezin quantization gives very explicit formulae for the relationship between func- 
tions on an orbit G/K and operators. The exponential functions are clearly given by 

E;W) = fD@.)(xK) =tr(D(x)pD(x)-lD(g)) =tr(pD(x-'gx)). 
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Since p is a density operator it immediately follows that Ef = tr(p) = 1, so that Ef is 
automatically normalized. Since D is irreducible, one of the components of AdD is the one- 
dimensional space of intertwining operators, which is projected by PI (A) = (tr(A)/d~) 1, 
where dD is the dimension of D. All other components being orthogonal to this will have 
vanishing trace. Applying the Theorem 10.1 to 

s 
E;(xK) dxK = 

s 
(AdD(x)p, D(g))&dxK 

G G 

= 
s 

(Ado(x)P, D(g))trAdo(x)(l) dxK 

G 

gives just a Single COmpOnent (p, l)WP1 (D(g)) = tr(p)tr(D(g))/dD = XD(g)/dD, which 
is Fronsdal’s character formula. Since D is irreducible, every operator A E L(‘FlD) is in the 
span of the D(g), so that the star product defined by 

E;*EP- EP h- gh 

(the multiplier a! being trivial on the compact subgroup G) will automatically aslo satisfy 

.f~*.f~ = fAB. 

One can also obtain Fronsdal’s expression for the exponential map in terms of spherical 
harmonics by choosing orthonormal bases Ti for pjL(h!D) and then noting that 

EgP(xK) = (Ado(x D(g))t, = C(Ado(x)P, T&C%, D(g))@. 

(Fronsdal’s formula uses for p the projection onto a highest weight vector for K .) 
Finally, let us see how the Berezin quantization arises in the context of Section 13. There 

certainly exists a tempered distribution po such that W (po) = p. Moreover, the fact that p 
is associated with D means that PD * po = po, from which we deduce that ,&I is actually a 
function. Exploiting the self-adjointness of p, we may therefore write 

Ei(xK) = tr(p*D(x-‘gx)) = tr(W(po)*PDU(X-‘gx)) 
n 

= tr(U(x>W(po)*U(x-‘)U(g)> = 
/ 

(x . po>(~>~W(~)*~k)) 
V 

= p-’ s (x . m)(u&(u)du = IAI-‘(x . P, Sg). 

V 

(For future reference, we note that we can similarly obtain the useful identity 

(Ado(x w(f>,tr = 1 Al-‘b . PO, f) 

for any f E SH(V).) To make the connection with our previous notions we Fourier- 
transform this, and to simplify the notation we use hats to denote transforms, so that f^ = 
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F f . Applying Plancherel’s theorem I A I2 ( f^, i) = ( f, g ), we deduce the first part of the 
following theorem. 

Theorem 11.1. The normal exponential map is related to that for the linear problem by 

EgP(xK) = IAl(x .;o, Eg) = IAl 
s 

(x . j?&u)E&) dv. 

V 

Themaptaking@ E ~D*S~(V) to 

@‘(xK) = InIb . ho, 4) = IAI s (x. hb)(vM(u)dv 
V 

is a homomorphism of star product algebras. 

ProojY The second part follows from the fact that the exponential maps generate each 
algebra, and satisfy the same product rule. 0 

Since x . po * Po = x . po, we could equally well replace E, by Ef . We can also give an 
explicit formula for the inverse of this homomorphism in terms of the Berezin quantization. 
For a start there must similarly be a function qo E pD * SH (V) such that Qu = W(qo), the 
relationship between qo and po being identical to that between Qu and p: 

qo = c dj 

j (PO? (PO)j) 
h>jt 

where (pu)j is given in terms of the character, Xj, of the irreducible component of Ado as 

Xj(g)(g . P) dg. 

Now we know that a function f on G/K has a Berezin quantization as 

Q(f)= 1 f(~K)Addx)Qod~K= j- f (xK)W(x . qo) dxK, 
GIK G/K 

which is the Weyl quantization of 

J f(xK)x.&,dxK. 

G/K 

Thus we have the following result. 

Theorem 11.2. The inverse to the map 4 H @’ is the map 

fH s 
f(xK)x .&dxK. 

GIK 
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We may easily check from this that, in particular, k, = (y . qo)P. The advantage of 
this correspondence is that the star product is much more readily described in SH (V) than 
directly in terms of functions on G/K, and we can now exploit the correspondence to obtain 
an integral formula for the product. 

Theorem 11.3. The product of functions f and g on G/K is given by 

(f * g)(xK) = IN’ 
s 

f(yK)g(zK)(x . PO, y . qo * z. qo) dyK dzK. 
G/KxG/K 

ProofI This follows from the fact that Berezin quantization is a homomorphism, so that 

(f * g)(xW = (x . P, Q(f>Qk))tr 

= I f(yK)g(zK)(x . P. W(y . qo)W(z . qo))tr dyK dzK 

G/KxGIK 

= ini-’ 
s 

f(yKMzK)(x . PO, (y . qo) * (z . qo)) dyK dzK. 

GfKxGfK 

as required. 0 

12. Examples 

The first example to which one always turns is that of SU(2). In the present context it 
means considering the dual pair G = U(2), H = U (1) in Sp(R4). We take the subgroup 
K of diagonal matrices in U(2), so that the quotient G/K is a sphere, S2. When D = D’ 
we have 

which is multiplicity-free, so that the projections Pj in Ado may be used as a basis for 
the intertwiners and they will pick out the tensor operators transforming with Dj for some 
integral j 5 21, and dj = (2 j + 1). Since p commutes with the action of K we see that Pj (p) 
must be the weight zero component of the tensor operator. By the general Wigner-Eckart 
theorem, we therefore have 

tr(pAdo(x)Pj(p)) = h D’(xko)OPj(p)). 

where eu is a weight zero vector in the representation space of Dj . This matrix element 
is given in’terms of a Legendre polynomial, Pj . Our general formula for the reproducing 
kernel therefore gives, for X, y in the unit sphere, 

k,(X) = c(2j + l)Pj@ .x>. 
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As a matter of fact we could have found this without calculation, since it is known that 
(2 j + l)Pj 0, . x) is the (appropriately normalized) reproducing kernel for the subspace of 
L2(S2) transforming with Dj. 

It is also quite easy to find exponential functions. For this we shall make the particular 
choice of p as the projection onto a highest weight vector, 52, in the space of D’. Then 

E;(K) = (a, D’(g)Q). 

But since D’ can be realized as the (2E)th symmetric power of natural representation and 
Q as the tensor power of its highest weight vector, e+, we have 

E,P(K) = (e+, ge+)2’. 

When g represents a rotation through an angle 8 about an axis II and k is a vector stabilized 
by K, this gives 

E:(K) = (cos ;O + isin iOn .k)2’. 

We therefore deduce that in general 

El(X) = (cos i6J + i sin @n . x)21. 

This can also be written in a more invariant form as 

E,P(x)[tr(~(l + 0 .x>g>12', 

(compare [Mo2, Section 41). 

13. Asymptotic behaviour of star products 

Star products are supposed to be deformations of pointwise multiplication of functions, 
but, when dealing with systems symmetric under a simple Lie group, there are no obvious 
deformation parameters to hand, so one adopts a slightly different approach. In our for- 
mulation one considers a family of density operators p ck), which are the projections onto 
the k-fold tensor powers, 52@), of a vector Q in the representation space of D. (When 
D is realized on sections of a line bundle L, whose fibre at xK is spanned by D(x)f2, 
then D@)(x)flck) spans the fibre of Lk.) The symmetric tensor product Dck) acts on the 
space containing QCk), and there is a convenient nesting property that, for all k > 1, the 
representation AdD(k) contains Ado(l). This can be proved by noting the obvious injection 
i : L(x(k-‘)) ++ L(x(k-1) 63s 1 C L(‘HCk)). (This observation, which can also be derived 
by a duality argument, helps one to find the intertwining operators for AdD(k)). If one re- 
constructs an operator on the tensor power using fA , for A of order r, that is in L(‘Ft(‘)), 
then one actually gets ik-‘(A) = A 60s lCker), since 

(Ad&g)pCk), A 8~ lCk-“) = (AdD(‘)(g)p(‘), A) = fA(gK). 
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Suppose now that we Want to calculate the Star product fA *k f~ for B an Operator on 
T-P), using p . (k) Since fA and f~ are also the symbols of the operators A 63~ lck-“) and 
B 8 lckWs), we get the symbol of their product (A 8s l(k-‘))(B @ lckPS’). 

Consider the first case r = s = 1. when we have 

(A 8s 1 (k_‘))(B @Is 81 (k-s))4(k) 

= (A BS l’k-“)(B~ @.s c’k-“) 

= -l(ABe @ eck-‘) + (k - l)A( 8s B6 C3s 6’k-2’), 

since in the symmetrized product A must act on each term and it usually misses the term 
with the B. Now 

(Adock, (g)p 7 (k) ABsBBsl (k-2)) = (Ado(g)p, A)(Ado(g)p, B) 

= fA(gK)fB(gK). 

so that the net result is 

1 
fA*kfb’=-fAB+ 

k 
YfAfB. 

Viewed this way the fact that the star product has the usual product as an asymptotic limit 
is just a cluster property of the state p ck) of a kind familiar from quantum field theory. 

This easily generalizes to give the following theorem. 

Theorem 13.1. Let A be of order r and B of orders, and let fA oP fB denote the symbol 

of the terms in the composition of ik-’ (A) and i k-s(B) in which p factors in the tensor 
product are acted on by both A and B. Then 

min(r,s) 

fA *k fB = c 
(k-r)!(k-s)! fAoP fB, 

p=max(O,r+s-k) k!(k+p-r-s)! 

where fA 00 fB = fA fB is thepointwiseproduct. 

Proofi The proportion of terms for which the action of A and B overlaps on just p common 
factors follows a hypergeometric distribution, and is given by 

(k - r)!(k - s)!r!s!/k!(k + p - r - s)!(r - p)!(s - p)!p!. 

A proportion (i)( i)p! = r!s!/(r - p)!(s - p)!p! of this is accounted for by the ways 
of choosing the p common elements from A and B, and of pairing them, which we ab- 
sorb into the expression fA oP fB. On doing the division one obtains the coefficient as 
given. 0 

One deduces immediately that for k > r, s, fA *k fB is a rational function of k which is 
regular at k = co. (In [Mol-6,CRGl-3]), results of this sort are derived in a more general 
context, though with a less explicit or different form of expansion.) Using Stirling’s formula 
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we see that the coefficient of fA *k f~ is of order k-J’. The top term is just a multiple of the 
ordinary product, 

[(k - r)!(k - s)!/k!(k -r - s)!]f,& - (1 - rs/k)f,&j, 

and it is easy to relate the skew part of the first-order term to the Poisson bracket (fA, fs). 
To allow for the wide variety of normalization convections in common use we shall simply 
introduce a constant K. 

COrOIIary 13.2. Under the previous assumptions, the leading term in fA *k fB - f~ *k fA 
is 

iK (k-r)!(k-s)! ifA,f I 
k!(k+l-r-s)! ” 

Pro05 We first consider the case of r = s = 1, In this case A and B are quadratic functions, 
for which it is known that the quantization is exact, that is 

fA *I fB - fB *I fA = iK(fA, fB}. 

Next consider the case of factorizable A and B, that is 

A=A1@s&t3s~~~@sA,, B = BlC3s B2 8s . . .@s B, 

WifhfA=fA,,...,fArrandfB=fs,,..., fBs . As usual the pointwise product terms in 
fA *k fB and fB *k fA cancel, leaving the leading p = 1 term 

(k-r)!(k-s)l (fAO1 fB- fB0, fA). 
k!(k + 1 - r - s)! 

NOW fA 01 fs contains the terms where just one of the A and B factors overlap, Ai and Bj, 

say. The difference fA 01 fB - fs 01 fA is thus a sum of terms of the form 

n fAm n fBn (fAi 01 fBj - fBj 01 fAi) = ‘K n fA, n fS, IfAi 1 fBj 1. 
m#i n#j m#i n#j 

By the Leibniz prOperty of the Poisson bracket this reduces to iK( fA, fB), as asserted. 0 

When dealing with K8hler manifolds 

fA(d (D(‘)(z)dr’, AD(‘)(z)0(‘)) 
p= 
fpw (2) l(N), D(‘)(z)Q@))12 

can be regarded as holomorphic function of z and Z. Recalling that fpcr, = f;, the Poisson 

bracket can be written as 

If3 LTI = CFf vjS - VjgVjf )9 

j 

where Vj acts as fi’2-r aj f;, and aj denotes the derivative with respect to a homogeneous 
complex coordinate. The higher-order terms in the expansion can be likewise be written in 
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terms of vTVj!, which links in with the results of Moreno, Cahen, Gutt and Rawnsley. For 
example, in the simplest case of r = s = 1 on CP”, with the representative point (1, z), for 
z E Cn U co, we readily calculate that 

f *k g = .fg + 
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